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Table 11. Solvent-Temperature Effects for the Reaction 
of n-BuLi with l a  

% productsb 
solvent ternrx "C 3a 5 c  6 

(CH30 )zCH:! 0 97 3 0 
Et20 0 90 10 0 
Et20 -78 55 15d 0 
THF 0 70 20 10 
THF -78 5 15 80 
0 All reactions were 0.1 M in 1 and utilized 1.2 equiv of n-BuLi; 

after 1 h the reactions were quenched with excess DzO. Deter- 
mined by VPC on 5 ft X '14 in. 1.5% OV 101 on 100/120 Chromo- 
sorb G column. In all cases, mass balance was >80%. Deuterium 
incorporation verified by NMR. Amount of 5 estimated by 
NMR; unreacted 1 accounted for the remainder of the mass. 

Scheme I1 
D 

1. n-BuLi I 
CHL=CHSePh n-BuCH,CHSePh 

2. D,O 
1 3a 

D 
I + CH,=CSePh + n-BuSeR 

5 6a, R = C,H, 
b, R = C,H, 

solvent and temperature effects are crucial, with dimethox- 
ymethane or diethyl ether at 0 "C providing the best results 
in preliminary studies involving the addition of n-BuLi to 1 
followed by quenching with DzO (Table 11). Related solvent 
effects have been previously observed for the reaction of al- 
kyllithiums with alkenes, and, although complex, may be re- 
lated to the state of aggregation of the alkyllithium re- 
agent. 

We are currently investigating the use of vinyl phenyl 
selenides as synthons in a number of other reactions; these 
results will be reported in due course. 
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Template Synthesis of Macromolecules. Selective 
Functionalization of an Organic Polymer 

Summary: Hydrolysis of a copolymer of divinylbenzene and 
bis(vinylbenzy1) trans-1,2-cyclobutanedicarboxylate liberates 
polymer-bound benzyl alcohol groups; rebinding studies and 
chemical transformations of the benzyl alcohol groups suggest 
that the functional groups are capable of retaining some ste- 
reochemical information originally present in the cyclobutane 
diester. 

Sir: The ability to selectively introduce organic functionality 
in fixed geometrical relationships has remained a longstanding 
challenge to chemists. A variety of ingenious approaches have 
been employed to accomplish this goal.' A technique recently 
developed by Wulff and co-workers2 strikes us as having the 
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Scheme I 

c3 - 3 

potential to he one of the more general methods for the con- 
trolled introduction of multiple organic functionality in or- 
ganic polymers. The  technique, which we term the template 
synthesis method, is illustrated in Scheme 1. A template as- 
sembly (I), synthesized from three difunctional subunits (step 
l ) ,  is copolymerized with a large excess of cross-linking 
monomer (step 2). Polymerization results in the formation 
of a three-dimensional polymeric matrix interspaced by an 
occasional template assembly (2). Hydrolysis of accessible 
template assemblies (step 3) liberates the incipient func- 
tionality to produce regions of multiple functionality on the 
macromolecule (3). Provided that the hydrolysis (step 3) does 
not introduce gross structural deformations in the macro- 
molecule, the hydrolyzed polymer can exhibit a “memory” for 
the original template molecule (T). 

We wish to describe a sequence of experiments that employs 
the template synthesis method to introduce masked organic 
functionality in a macromolecular solid. Conditions have been 
developed that permit the liberation of these functional 
groups and in subsequent reactions this functionality is uti- 
lized to covalently hind an organic substrate molecule to the 
macromolecular solid. Further chemical transformations on 
the covalently bound substrate molecule provide an  oppor- 
tunity to probe the Id environment of the functionality. The 
overall series of reactions is illustrated in Scheme 11. 

Bis(vinylhenzy1) trans-1.2-cyclobutanedicarhoxylate (5). 
prepared from the dipotassium salt of trans-1,2-cyclohuta- 
nedicartmxylic acid and vinylbenzyl chloride (mixture of meta 
and para isomers), is copolymerized under free-radical con- 
ditions with divinylhenzene (technical, 55% para, meta iso- 
mers) in acetonitrile (0.050.490.46, w/w/w)~. The resulting 
solid (6)  is crushed and sized (75-250 pm), extracted with 

Scheme 11 

I 1  KOH c 
21 Cn,cllDMF 

co2n 

4 

Hocn2+ -@n 

coin 
7 

6 

t 
9 

CH30H (to remove unreacted monomer), and dried in vacuo. 
The IR of this polymer exhibits the expected superimposition 
of the spectra of the diester UC=O 1736 cm-’) over that of 
poly(diviny1benzene). A variety of conditions were examined 
to effect the hydrolysis of dicarboxylic acid (4) from the 
polymer: optimum yields were obtained by refluxing in 
methanol-HCI (1:l) under a nitrogen atmosphere. After 8 h 
approximately 30% of the total template assemblies had un- 
dergone hydrolysis. Prolonged exposure to the reaction con- 
ditions did not appreciably increase this yield. The hydrolyzed 
polymer (7) contains 0.064 mequiv of sitedg; each site contains 
two polymer-hound benzyl alcohol groups. The presence of 
these functional groups is verified by treatment of 7 with tri- 
fluoroacetic anhydride; the resulting polymer exhibits a new 
IR absorption at 1788 em-’ (trifluoromethylacetate group); 
control reactions with unhydrolyzed polymer did not produce 
this new absorption.’ 

Reaction of hydrolyzed polymer with difunctional reagents 
of similar geometry to the original template molecule,cnn lead 
to two-point rebinding. Treatment of 7 with fumaryl chloride 
results in covalent attachment of the fumarate group to the 
polymer. The rebinding occurs by formation of new ester 
linkages between the polymer and the fumarate group. This 
rebinding can be monitored hy examining the change in in- 
tensity in the carbonyl region of the polymer before and after 
exposure to fumaryl chloride. The individual carbonyl ah- 
sorptions of polymer-hound fumaric and cyclohutanedicar- 
boxylic acid esters are not resolved: nevertheless, upon 
treatment of 7 with fumaryl chloride the expected increase 
in carbonyl intensity is observed. That  fumaric acid is coua- 
lently bound to the polymer is established by the finding that 
the acid can only be liberated by a second hydrolysis 
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(CH3OH-HC1); the quantity of fumaric acid recovered indi- 
cates that 80% of the available sites in 7 have covalently bound 
the new template molecule.5 

The sequence of transformations serves to illustrate several 
important points. The fractional recovery of template mole- 
cules (30%), even after prolonged hydrolysis, establishes that 
a significant number of template assemblies occupy inac- 
cessible regions of the polymer. Unlike Merrifield polymers 
which, a t  least in their swollen state, undergo reaction 
throughout the polymer network,6 hydrolysis occurs largely 
in the region that may be loosely defined as the surface of a 
solid polymer particle. This finding is undoubtedly a conse- 
quence of the higher degree of cross-linking in poly(diviny1- 
benzene). Second, the uptake of fumaryl chloride is approxi- 
mately equal to the theoretical number of difunctional sites 
and suggests that, at  least in a significant number of cases, 
rebinding can occur in a manner similar to that which was 
found in the original polymer (two site). 

The region in which the hydrolysis and rebinding occur is 
rather poorly defined. The area is a t  the interface between 
solvent phase and the highly cross-linked “nucleus” of the 
solid poly(diviny1benzene). Located in this region are pendant 
polymer and vinyl groups, template assemblies, rebinding 
sites, and more lightly cross-linked segments of the p ~ l y m e r . ~  
If the hydrolyzed polymer is to exhibit a “memory” for the 
template molecule (T), the template assembly must “imprint” 
stereochemical information at  the polymerization stage. Our 
first test for this “memory” is illustrated in Scheme 11. The 
sequence involves a t  the penultimate step a methylene 
transfer to a prochiral alkene (fumaric acid) covalently bound 
to the macromolecule. When racemic template (5) is used for 
the polymer synthesis, racemic cyclopropanedicarboxylic acid 
would be the product from the methylenation step; however, 
when a chiral template is used for the polymer synthesis the 
“memory” can take the form of local asymmetry in the region 
of the functional groups; this asymmetry may induce forma- 
tion of a chiral product in the methylenation step. The poly- 
mer-bound fumaric ester (8) was reacted with methylene 
transfer reagents to form 1,2-cyclopropanedicarboxylic acid 
ester (9). This transformation was successfully executed using 
(dimethy1amino)phenyloxosulfonium methylide as the 
nucleophilic methylene transfer reagent.8 Synthetic cyclo- 
propanedicarboxylic acid is liberated by hydrolysis in 34% 
overall yield based upon available sites of the hydrolyzed 
polymer (7). 

The preceding sequence was repeated using (-)-trans- 
1,2-cyclobutanedicarboxylic acid ( [ a ] 2 5 ~  -158.7’ (CH30H)) 
as the t e m ~ l a t e . ~  After hydrolysis, rebinding of fumaryl 
chloride, cyclopropanation, and hydrolysis, trans-1,2-cyclo- 
propanedicarboxylic acid was recovered as the dimethyl ester 
by preparative VPC. The diester exhibited a specific rotation, 
[ a I 2 l ~  0.1”, which corresponds to a 0.05% enantiomeric ex- 
cess.l0 The slight enantiomeric excess arises in the methylene 
transfer step and is the result of a chiral environment (of some 
unspecified nature) surrounding the reaction zone. Consid- 
ering the severity of the hydrolysis conditions, the observed 
asymmetric induction is encouraging. Work is continuing in 
an effort to understand those factors which will influence the 
magnitude of asymmetric induction and to define the degree 
of stereochemical control available by the template synthesis 
approach. 
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Lithiation of Ethyl 2,4,6-Triisopropylbenzoate 
Adjacent to Oxygen: The  a-Lithioalkyl 
Alcohol Synthon 

Summary: Metalation of ethyl 2,4,6-triisopropylbenzoate 
(1) with sec- butyllithium/tetramethylethylenediamine in 
tetrahydrofuran provides a-lithioethyl 2,4,6-triisopropyl- 
benzoate (2). Reaction of 2 with carbonyl and halide electro- 
philes provides the expected products 3a-g. Reduction of 
typical products with lithium aluminum hydride gives the 
corresponding alcohols. Overall this sequence provides the 
a-lithioalkyl alcohol synthon from a primary alcohol. 

Sir: The formation and use of a-heteroatom carbanions has 
been widely explored and exploited in recent years. In con- 
junction with our studies of prospectively dipole-stabilized 
carbanions, we have reported metalations adjacent to the 
heteroatom of methyl 2,4,6-triisopropylbenzoate, methyl and 
ethyl 2,4,6-trialkylthiobenzoates, and methyl- and ethyl- 
2,4,6-triisopropylben~amides.~~~ The metalations of the ester 
and thioesters have been shown to be key steps in providing 
the a-lithiomethyl alcohol and the a-lithiomethyl and a-li- 
thioethyl thiol synthons, respectively. More recently Seebach 
et  al. have observed similar metalations of 2,4,6-trialkylben- 
zoate derivatives and also have shown that dimethyltri- 
phenylacetamide provides the (a-1ithiomethyl)alkylamine 
~ y n t h o n . ~  We now wish to report that ethyl 2,4,6-triisopro- 
pylbenzoate can be metalated adjacent to oxygen and to 
suggest that this approach will provide a-lithioalkyl alcohol 
synthons for the corresponding primary alcohols. 

Reaction of ethyl 2,4,6-triisopropylbenzoate (1) with 2-4 
equiv of see- butyllithium/tetramethylethylenediamine (s- 
BuLi/TMEDA) in tetrahydrofuran (THF) a t  -78 “ C  for 3-6 
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